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We examine controlled systems which are described by linear differential equa- 

tions with constant coefficients. We assume that the controlling forces are con- 

strained simultaneously in magnitude and in impulse. The time-optimal prob- 
lem for this case was investigated, for example, in [l - 31. 

Below we prove a theorem on 2n intervals of constancy of the optimal control. 
This theorem is analogous to the theorem on n intervals given in [4, 51, which 

holds when the control is bounded only in magnitude. 

1. Strtrmrnt of the problem, We consider a controlled system described 
by a linear matrix differential equation with real constant coefficients 

dxidt = Ax + bu (1.1) 

Here x = 11 xi 11, A. = 11 aij 11, b = II bi II are matrices of order (n X I), (n X n), 
(n X 1) ,respectively, n = 11 (t) is a scalar piecewise-continuous time function satis- 

fying simultaneously the two constraints 

1 u(t) I < hi! (‘\I = const > 0) (1.2) 

[I 01 u 7 dz<N (N = const > 0) (1.3) 
0 

Constraints (1.2) and (1.3) are simultaneously present, for example, when control is ef- 
fected by a jet thruster. Here inequality (1.2) corresponds to the boundedness of the fuel 
flow rate, while inequality (1.3) corresponds to the boundedness of the thruster’s propel- 
lant capacity. We denote by 9 the set of piecewise-continuous functions u (t) satisfy- 
ing simultaneously inequalities (1.2) and (1.3). We examine the time-optimal problem 
of taking system (1.1) to the origin by means of a control U (t) E Q. 
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2. The optimal control, The solution of Eq. (1.1) has the form 

z (t) = eAfx (0) + 5 eA (f-r) bu (z) dz 
” 

(2.1) 

where 5 (0) is the system’s initial state. Let z (t) = 0 at t = T, then from (2.1) we 

have T 

--5 (0) = i cArbu (z) dz (2.2) 

If equality (2.2) is realized by admissible control zz (t) E Q, then this control satisfies 
the inequality 

{,U@),CM (2.3) 

By Q2’ (T) we denote the set of piecewise-continuous functions u (t) satisfying con- 
ditions (1.2) and (2.3). We introduce the notation 

n (T) = f e-Afbu (z) dz 
0 

and in the phase space X, we consider the attainability region 

Q (T) = {v (T): u (4 E Q (T)} 
This region possesses a number of properties, described in [3, 61. We take an arbitrary 

unit vector q (1 X IZ) and we construct support hyperplanes of set Q (T), orthogonal 

to vector q. There are two such planes and they are symmetric to each other relative 

to the origin. We denote by 17 (q, T) that one of the planes for which the vector q 

Fig. 1 

then the optimal control has the form 

at the point of tangency is the outward normal to 

set Q (T) (Fig. 1). 
Let T” be the minimum time in which system 

(1.1) can be taken from state x: (0) to the origin, 
i.e. the time-optimal time. ‘If point 2 (0) be- 

longs to the system’s controllability region [6], 
then the minimum time T” exists for it. The 
point 5 (0) (as well as - 2 (0)) belongs to the 

boundary of the region Q (p) [3, 51. We con- 
struct the support hyperplane II ($‘, T”) of set 
0 (TO), containing the point - J: (0) (Fig. 1). 
If the optimal transient time T” corresponding 

to state z (0) satisfies the inequality 

MT”,(N (2.4) 

l-51 

u” (t) = M sgn [r)“e-Af b] (2.5) 

Under condition (2.4) constraint (1.3) is unessential. 
Assume that the inequality 

MT”>N 

holds. In this case the optimal control is unique and has the form [3] 

(2.6) 
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ZP (t) = 
i 

M sgn [q”eVA’b I for t EE(0”) 

0 for t E G (&) (2.7) 

Here 

E (0) = {t E [O, T”1: 1 q”e --Qb 1 > a} 

G (c) = {t E IO, PI: 1 roe- At b 1 < 0) (E(o) IJ G(o) = IO, Tl) 
The quantity (3’ satisfies the equation 

PE (u) = N/M (2. 8) 

in which /-& (0) is the Lebesgue’s measure [7] of set E (0). 
If the support hyperplane n (q”, T”) is unique. then the inequality 

‘p (t) = q”e-Afb + const (2 9) 

holds [3] under condition (2.6). Let us assume that the support plane at the point 
- 2 (0) is not unique (- IC (0) is a corner point of region Q (TO)). In this case, 
among all the support planes containing point - z (0) we can select a plane fl (TO, 
T”) such that the inequality (2.9) also holds for the corresponding vector q” . In what 
follows we consider that the vector q” has been chosen in that manner. 

From the analyticity of the function rp (t\ it follows that under condition (2.9) the 
number l of local maxima of the function’ 1 cp (t) 1 on the interval [O, To] is finite. 

Here the set E (&) consists of a finite 
Ipttll number of intervals (in Fig. 2 this set 

is shown by the heavy lines) the sum 

of whose lengths equals N / iVf in cor- 
respondence with Eq. (2. 8). The set 
G (a’) consists of a finite number of 
segments. From expression (2.7) it 

follows that the optimal control u” (t) 

has a finite number of intervals on 
Fig. 2 which 1 u” (t) I s M and a finite 

number of intervals on which u” (t)= 
0; in other words, the control u” (2) has a finite number of intervals of constancy. 

3. Theorem on 2h intervala. The assertion on the finiteness of the number 
of intervals of constancy of the optimal control holds for systems with any eigenvalues. 
A stronger assertion holds for systems with real eigenvalues. 

Theorem. If all the eigenvalues of matrix A are real, then for any initial condi- 
tions the optimal control u” (t) has nq more than n intervals on which 1 u” (t) 1 s kf 
and no more than n intervals on which u0 (t) z 0. Consequently, the control U” (t) 

has no more than 2n intervals of constancy. 
Let us prove this theorem. If the initial state z (0) is such that the minimum time 

To for it satisfies inequality (2.4). then the optimal control U” (1) of (2.5) does not 

have intervals of complete measure, on which u” (t) z 0. In accordance with Fel’d- 
baum’s theorem [4, 51 the number of intervals on which 1 U” (t) 1 r&f does not exceed 
the number n. 

Now let the initial condition 5 (0) be such that the minimum time T” for it satisfies 
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inequality (2.6). The number of intervals of set E (a”) does not exceed the number 1 
of local maxima of function 1 Cp (t) 1 on the interval 10, T”] (Fig. 2). Let 0 ,( tI ( 
ta< . . . < tk < T”be k zeros of the function cp (t). We denote by m the number 

of points on the interval [O, To] at which the derivative cp’ (t) equals zero. If all the 

eigenvalues of matrix A are real, then k < n - 1 and m < n - 1 [5]. The local 

maxima of function 1 cp (t) 1 can occur at points where cp’ (t) = 0, as well as at the 

points t = 0 and t = T” (Fig. 2). Consequently, 1 < m + 2 < n + 1. We now 
prove that .! < n. 

Assume that .? = n -j- 1. Then the function 1 cp (t) 1 has local maxima at m = 
n - 1 points of the interval (0, T”) and at the two points t = 0 and t = T”; 
here tl > 0 and tk < T”. In this case the function 1 cp (t) 1 has no local maxima on 

the interval [0, To] excepting the points tl,..., tk. There are no local maxima on 
the intervals (0, tI), (tk, T”) because otherwise there would be local minima on these 

intervals. For this same reason there can be only one maximum on each of the k - 1 
intervals ( tl, ta) , . . . , (tk_l, tk) (Fig. 2). Then we obtain that m = k -1 < n - 2, 
but this contradicts the equality m = n - 1. Thus, 1 < n ; the first part of the theo- 
rem is proved. 

If 1 = n, then the function I cp (t) 1 reaches a local maximum either for t = 0 
or for t = T” Here the set G (a”) on which u” (t) = 0 consists of no more than n 

segments. This assertion is all the more valid when 1 < n . The theorem is proved. 
If we examine, for example, the first-order equation ~1. =- zrj- u, then for points 

~~(0) sufficiently distant from zero the optimal control in this equation has exactly two 

intervals of constancy. As regards, for example, the second-order equation CC” = u, 
considered in [3], the number of intervals of constancy for it under all initial conditions 
does not exceed three (3 = 212 - 1). 

The situation is different when only the constraint (1.2) is present. For any comple- 

tely controllable [8] system with real eigenvalues there exist initial states for which the 
optimal control has exactly n intervals of constancy [4]. We note that in systems with 

a control constrained only in impulse (inequality (1.3)) a theorem, “contiguous” to the 
one proved here, on the number of impulses holds [9 - 111. 

If system (1.1) is not completely controllable [8], i.e. 

rank // b, Ab,..., An-lb 11 = p < n 

then by a nonsingular transformation of the form y = Kz it can be brought to the fol- 
lowing form [ 121: 

@Jdt = &y, + &ye + b1n, dyaldt = &~a (3.1) 

Here gl and ya are column-vectors of order (p x 1) and ((n - p) x 1) ,respectiv- 
ely. The matrices AI1, A,,, Aza, bl have appropriate orders. Here 

rank 11 b,, A&, . . ., .A!?b, II= p 

System (3.1) can be led to the origin only from those points y (0) at which ya (O)=O. 
Using the theorem proved above, we can assert that if all the eigenvalues of matrix A,, 
are real, then the optimal control in system (3.1) has no more than 2~ intervals of con- 
stancy for all initial conditions. 
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A general method based on the use of Lagrangian equations for determining 
hydrodynamic interaction between bodies in a fluid is presented. Formulas for 
the kinetic energy and the Lagrangian function are reduced to a form which per- 
mits an effective application of the method of small parameter. Additive com- 
ponents of kinetic energy and of the Lagrangian function, which determine the 

hydrodynamic interaction between two bodies, one of which is small in compa- 
rison with the distance between the two, are calculated. The method is used for 
considering the case of several bodies. The results are expressed in terms of co- 

efficients of apparent mass of individual bodies in a boundless fluid. General 


